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1. Introduction

The study of supersymmetric D-branes in the background of a RR flux has revealed new

structures on the corresponding superspace. In particular, it turns out that in this back-

ground the coordinates of the superspace on the brane do not (anti)commute with each

other [1, 2].1 Interestingly, this is the sole effect of the background, and hence, as far

as the dynamics of D-branes is concerned, one can basically ignore the background fields

and in effect assume that the coordinates in superspace do not (anti)commute. The nice

thing is that even with such nonanticommuting coordinates one can still construct a super

Yang-Mills theory preserving half the N = 1 supersymmetry [2]. If, however, one insists

on preserving the whole supersymmetry, then as shown by Ooguri and Vafa [1], one further

needs to deform the anticommutation relation between the spinor fields on the worldvol-

ume of the brane. The resulting N = 1/2 SYM theory and its generalizations have been

extensively studied, see [9]-[36], for instance.

In the present work we provide a setting for the study of D3-branes in a graviphoton

background. As said above, the graviphoton background introduces a new structure on

the superspace coordinates. Accordingly, one needs to refine the superfields definitions,

and in writing the lagrangian use star products instead of ordinary products. Explicitly,

to write an effective lagrangian for D3-branes we proceed as follows. First, we write the

1For earlier works on nonanticommutative superspace see [3]-[8].

– 1 –



J
H
E
P
0
1
(
2
0
0
6
)
0
1
7

N = 4 lagrangian in terms of N = 1 superfields. The superfields are adapted according to

the nonanticommutative nature of the superspace. And finally we use the corresponding

nonanticommutative star product in between the superfields.

There exists, however, a direct way of writing the effective lagrangian and checking

whether the above construction is consistent. In so doing, we first note that the graviphton

flux Cµν is coming from a ten-dimensional five-form RR flux Cµνijk upon compactification

to four dimensions. On the other hand, it is known that how D3-branes respond to this

flux; it is through the Chern-Simons action and the Myers terms. For a particular choice

of a five-form flux with a zero energy momentum tensor this term has been calculated

in [38]. Here, upon a nonanticommutative deformation of N = 4 SYM theory,2 we show

that the same Myers terms are reproduced. Though, the fermionic terms as well as the

supersymmetry transformations will be different than the ones in [38]. Having derived the

lagrangian, we examine the vacuum states of the theory. In the absence of the fermionic

fields the vacuum states are the same as those in ordinary N = 4 theory. In particular,

since the theory is defined on euclidean space, we can have new configurations where the

holomorphic scalars, φi’s, obey an SU(2) algebra forming a fuzzy two-sphere. Being a

vacuum state, the whole configuration will have a zero action. However, in the deformed

theory it is also possible to have supersymmetric vacua where a fermionic field (λ̄) and the

gauge field Aµ are nonzero. Furthermore, we will see that there are vacuum configurations

which break supersymmetry. These are characterized by nonzero U(1) connections together

with noncommuting antiholomorphic constant scalar fields.

The organization of this paper is as follows. In the next section, we begin with the

preliminaries of the nonanticommutative superspace, and adapt the superfield definitions

accordingly. We then write the N = 4 lagrangian in terms of the N = 1 superfield language,

and use the star product to multiply the superfields. This defines a nonanticommutative

deformation of N = 4 theory. In section 3, we discuss the bosonic terms of the lagrangian

which linearly depend on the deformation parameter. These terms are precisely the Myers

terms appearing in the effective lagrangian of multiple D3-branes in the background of

a five-form RR flux. In section 4, we discuss the vacuum states of the deformed theory.

When the self-dual part of the gauge field strength is nonzero, we will argue how the

commutation relation of (anti)holomorphic scalars are deformed to that of coordinates of

a fuzzy two-sphere. The summary and conclusions are brought in the last section.

2. Nonanticommutative deformation of N = 4 SYM

As mentioned in the Introduction, there are two approaches to study the dynamics of D-

branes in the graviphton background field. Either one can take care of the background by

adding appropriate Chern-Simons terms to the DBI action using the Myers prescription [39,

38]. Or alternatively, write the N = 4 theory in terms of N = 1 superfields and use the

nonanticommmutative star product. In this section we follow the latter approach, and show

2As the N = 4 supercharges carry internal SU(4) indices, one can think of some more general de-

formations of the supersymmetry algebra. For instance, in the case of N = 2 supersymmetry, variant

deformations have been considered in [37].
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that it leads to the correct Myers terms for a stack of D3-branes in a five-form flux. In this

way, we propose a lagrangian which describes D3-branes in the corresponding graviphoton

background. Note that a similar equivalence in the description of D-branes in a Kalb-

Ramond B background occurs; one can either introduce the B field directly into the DBI

action, or instead, introduce it through an appropriate star product between the fields [40].

2.1 Preliminaries

To begin with, let us recall the construction of the nonanticommutative superspace in [2]

where the θ coordinates satisfy the following anticommutation relation

{θα, θβ} = Cαβ , (2.1)

for Cαβ a constant symmetric matrix. This, however, requires an ordering for the product

of functions of θ. We choose then to define

f(θ) ∗ g(θ) = f(θ) exp

(

−Cαβ

2

←

∂

∂θα

→

∂

∂θβ

)

g(θ) . (2.2)

For the chiral multiplet we have

Φ(y, θ) = φ(y) +
√

2θψ(y) + θθF (y) . (2.3)

However, for the antichiral multiplet and V we choose

Φ̄(ȳ, θ̄) = φ̄(ȳ) +
√

2θ̄ψ̄(ȳ) +

+θ̄θ̄

(

F̄ (ȳ) +
i

2
Cµν{Fµν , φ̄} + iCµν

{

Aν ,Dµφ̄ − i

4
[Aµ, φ̄]

}

(ȳ)

)

V (y, θ, θ̄) = −θσµθ̄Aµ(y) + iθθθ̄λ̄(y) − iθ̄θ̄θα

(

λα(y) +
1

4
εαβCβγσµ

γγ̇{λ̄γ̇ , Aµ}
)

+

+
1

2
θθθ̄θ̄ (D(y) − i∂µAµ(y)) , (2.4)

where

Cµν ≡ Cαβεβγ(σµν) γ
α . (2.5)

Also note that y and y are related through

yµ = yµ − 2iθσµθ̄ , (2.6)

together with

[yµ, yν ] = [yµ, θα] = [yµ, θ̄α̇] = 0 (2.7)

and thus

[yµ, yν ] = 4θ̄θ̄Cµν . (2.8)

Since ȳ coordinates do not commute, for the antichiral superfields we define the following

star product:

Φ̄1(ȳ, θ̄) ∗ Φ̄2(ȳ, θ̄) = Φ̄1(ȳ, θ̄) exp

(

2θ̄θ̄Cµν

←

∂

∂ȳµ

→

∂

∂ȳν

)

Φ̄2(ȳ, θ̄)

= Φ̄1(ȳ, θ̄)Φ̄2(ȳ, θ̄) + 2θ̄θ̄Cµν ∂

∂ȳµ
Φ̄1(ȳ, θ̄)

∂

∂ȳν
Φ̄2(ȳ, θ̄) . (2.9)
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Notice that the choice of Φ̄ and V in (2.4) ensures that the gauge transformations take the

canonical form [2, 41]. The chiral and antichiral field strength superfields are

Wα = −1

4
DDe−V DαeV ,

W α̇ =
1

4
DDeV Dα̇e−V . (2.10)

2.2 The C-deformed lagrangian

With these preliminaries on the C-deformed superspace, we are now ready to set the stage

for a particular nonanticommutative version of N = 4 SYM. A simple prescription for

writing the corresponding lagrangian is to express the N = 4 lagrangian in terms of N = 1

superfields and then use the above star products in between the superfields. In so doing, we

recall that the field content of N = 4 theory, in the language of N = 1, consists of a gauge

multiplet W α together with three chiral multiplets, Φi, all in the adjoint representation of

the gauge group U(N). So for the deformed lagrangian we get

L =

∫

d2θ tr (W α ∗ Wα) +

∫

d2θ̄ tr
(

W α̇ ∗ W
α̇
)

+

+

∫

d2θd2θ̄ tr

3
∑

i=1

(

Φ̄i ∗ eV ∗ Φi ∗ e−V
)

+

+

√
2

2

∫

d2θ tr (Φ1 ∗ [Φ2
∗, Φ3]) −

√
2

2

∫

d2θ̄ tr
(

Φ̄1 ∗ [Φ̄2
∗, Φ̄3]

)

. (2.11)

The above lagrangian is manifestly invariant under the following gauge transformations

eV → e−iΛ ∗ eV ∗ eiΛ

W α → e−iΛ ∗ W α ∗ eiΛ

W α̇ → e−iΛ ∗ W α̇ ∗ eiΛ

Φi → e−iΛ ∗ Φi ∗ eiΛ

Φ̄i → e−iΛ ∗ Φ̄i ∗ eiΛ .

Here Λ and Λ are the chiral and antichiral superfields, respectively. Also note that the

superpotential in (2.11) breaks the original SO(6) R-symmetry to an SO(3) subgroup.

Let us now apply the star product rules (2.2) and (2.9) in (2.11) and do the integrals

over the odd coordinates of superspace and write down the lagrangian in terms of the

component fields

L = tr

(

−1

4
FµνFµν + iλ̄σ̄µDµλ +

1

2
D2 − Dµφ̄iDµφi + iψ̄iσ̄

µDµψi + F̄iFi −

− i
√

2

2
[φ̄i, ψi]λ +

i
√

2

2
[φi, ψ̄i]λ̄ +

D

2
[φi, φ̄i] −

i

2
CµνFµν λ̄λ̄ +

1

8
|C|2(λ̄λ̄)2 +

+
i

2
CµνFµν{φ̄i, Fi} −

√
2

2
Cαβ{Dµφ̄i, (σ

µλ̄)α}ψβi −
|C|2
16

[φ̄i, λ̄][λ̄, Fi] +

+

√
2

2
εijk

(

F iφjφk − φiψjψk − 1

12
|C|2 F iF jF k

)

− (2.12)
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−
√

2

2
εijk

(

F̄ iφ̄j φ̄k − φ̄iψ̄jψ̄k +
2i

3
CµνFµν φ̄iφ̄j φ̄k +

2

3
CµνDµφ̄iDν φ̄j φ̄k

)

)

where |C|2 = CµνCµν , and i, j, . . . = 1, 2, 3. Note that terms in the last two lines are coming

from the deformed superpotential. The covariant derivatives in the last term appear exactly

because of the antichiral superfield definition we used in (2.4).

3. Myers terms

In this section we are going to examine the bosonic terms of the superpotential. In par-

ticular, we will see that the bosonic terms which are linear in C can be identified with the

Myers terms. Consider a stack of D3-branes in the presence of a five-form RR flux Cµνijk.

We choose an RR flux which has a zero energy-momentum tensor and thus it has no back

reaction on the metric. The RR flux affects the effective action of the D3-branes through

the Chern-Simons term, and Myers provides the way one has to calculate this term for

multiple branes [39]. For our particular choice of RR flux, this term has been worked out

in [38]. Adapting to our conventions in here this term reads

SCS =
α′

24g2
εµνρσ

∫

Cµνijk tr
(

−iφ̄iφ̄j φ̄kFρσ + 2φ̄iDρφ̄
jDσφ̄k

)

d4x . (3.1)

In the following we show that if we solve for the auxilary fields in (2.12) and take

Cµνεijk ∼ Cµνijk, then we reproduce the Myers term in (3.1). So let us first solve for the

auxilary fields, D,Fi and F̄i, using their equations of motion. This yields

D = −1

2
[φi, φ̄i]

Fi =

√
2

2
εijkφ̄

jφ̄k

F̄i = − i

2
Cµν{Fµν , φ̄i} +

|C|2
16

{

[φ̄i, λ̄], λ̄
}

−
√

2

2
εijk

(

φjφk − |C|2
4

F jF k

)

(3.2)

Plugging back the auxilary fields (3.2) into (2.12) the lagrangian reads

L = tr

(

−1

4
FµνFµν + iλ̄σ̄µDµλ − Dµφ̄iDµφi + iψ̄iσ̄

µDµψi−

−1

8
[φi, φ̄i]

2 +
1

4
[φj , φk][φ̄

j , φ̄k] +

√
2

2
εijk

(

φ̄iψ̄jψ̄k − φiψjψk
)

−

− i
√

2

2
[φ̄i, ψi]λ +

i
√

2

2
[φi, ψ̄i]λ̄ −

− i

2
CµνFµν λ̄λ̄ +

1

8
|C|2(λ̄λ̄)2 −

√
2

2
Cαβ{Dµφ̄i, (σ

µλ̄)α}ψβi −

−
√

2

32
|C|2εijk[φ̄

i, λ̄][λ̄, φ̄j φ̄k] − 1

48
|C|2εimnεjkl φ̄

mφ̄nφ̄kφ̄l[φ̄i, φ̄j ] −

−
√

2

6
εijk

(

−iCµνFµν φ̄iφ̄jφ̄k + 2CµνDµφ̄iDν φ̄j φ̄k
)

)

, (3.3)
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which is invariant under the so-called N = 1/2 supersymmetry transformations:

δAµ = −iλ̄σ̄µξ

δλ = − i

2
ξ[φi, φ̄i] +

(

Fµν +
i

2
Cµν λ̄λ̄

)

σµνξ , δλ̄ = 0

δφi =
√

2ξψi , δφ̄i = 0

δψi = ξ εijk φ̄jφ̄k , δψ̄α̇i = −i
√

2ξασµ
αα̇Dµφ̄i . (3.4)

We observe that upon the identification

Cµνεijk = − α′

2
√

2
Cµνijk , (3.5)

the bosonic terms linear in Cµν of (3.3) match exactly to the Myers terms in (3.1). The

conclusion is that the deformation of N = 4 SYM theory induced by the nonanticommu-

tative star product correctly reproduces the Myers terms. This is a further support for

taking (3.3) as the lagrangian of a stack of D3-branes in the five-form flux background.

It is interesting to compare the supersymmetric lagrangian (3.3) with the one con-

structed in [38]. In [38], a term quadratic in C was added by hand just for supersymmetric

completion. Although the quadratic C-terms in these two lagrangians look different, they

are both supersymmetric by themselves. Except for this, the two lagrangians have the

same bosonic part. The C-dependent fermionic parts and the supersymmetry transforma-

tions are totally different. For the supersymmetry transformations, in [38] a deformation

of the kind Cµνijkφ̄
iφ̄j φ̄k was introduced in δλ, whereas in (3.4) δλ is deformed through

the term Cµν λ̄λ̄. So we conclude that the supersymmetric extension of the system is not

unique. As for the supersymmetry transformations, the fixed points of the super charges

are not the same. For the model constructed in [38], the fixed points do not change after

the deformation with the RR flux. However, as we discuss in the next section, the fixed

points of the supersymmetry transformations in (3.4) will be different.

To see which lagrangian originates from string theory, one needs to generalize and

extend the Myers method to calculate the quadratic terms in the RR fields as well as

the fermionic terms. However, as Seiberg, Ooguri and Vafa [2, 1] have pointed out, the

nonanticommutativity arises if we turn on a graviphoton background (which in turn comes

from a five-form flux upon compactification to four dimensions). Therefore, we expect a

string theory calculations would yield (3.3) as the effective lagrangian of D3-branes in this

RR background.

4. Vacuum states

In this section we will examine the vacuum states of the model. We first argue that the

partition function of the model is independent of the deformation parameter C. This

happens because the undeformed N = 4 SYM theory has an exact R-symmetry. On the

other hand, all the C-dependent terms which appear after the deformation have a positive

R charge, and hence they will have a zero expectation value in the undeformed theory. So

– 6 –
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we conclude that the partition function is invariant under the deformation. This further

implies that the vacuum energy remains to be zero. This is similar to what happens in

the Wess-Zumino model [42] and pure N = 1/2 SYM theory [43]. Apart from ordinary

vacuum states of N = 4 SYM theory, in the following, we will see that the deformed theory

admits more vacuum states. First we discuss a set of vacua which are invariant under the

supersymmetry transformations. Besides such BPS vacua we also encounter zero energy

configurations in which supersymmetry is spontaneously broken.

4.1 Supersymmetric vacua

To discuss the BPS states of the model, let us first set the fermoins to zero and look at the

bosonic configurations for which the variations of the fermionic fields vanish. So requiring

δλ, δψi, and δψ̄i to be zero we obtain

F+
µν = 0 , Dµφ̄i = 0 ,

[φi, φ̄
i] = 0 , [φ̄j , φ̄k] = 0 , (4.1)

for the BPS configurations. These are the ordinary BPS states of N = 4 theory, however,

note that here φi and φ̄i are independent and the commutator [φi, φj ] has not been fixed

by the supersymmetry transformations. Therefore, one can think of BPS states where φi’s

(satisfying equations of motion) are not commuting.

An interesting case where vacuum solutions of this kind can appear is when F+
µν is

a nonvanishing constant. This is only possible if the instanton number vanishes and the

fermionic field λ̄ is turned on. To see this, first let us take λ̄ 6= 0, δλ = 0, which requires

F+
µν +

i

2
Cµν λ̄λ̄ = 0 , (4.2)

together with 6Dλ̄ = 0 coming from the equation of motion for λ. Finite action solutions

to the above deformed instanton equation have been discussed in [44]. Here, however, we

would like to discuss the zero action constant solutions of this equation. In the undeformed

N = 4 theory (C = 0), for a vacuum state we require both the action and the instanton

number to vanish implying that Fµν must be zero. But in the deformed theory, the extra C-

dependent term in the instanton equation allows to have vacua where Fµν is nonvanishing.

In contrast with the instantons, however, these are not localized solutions.

For simplicity, let us take the U(1) part of the gauge field and λ̄ to be the only nonzero

components. A solution to eq. (4.2) then is a constant λ̄ and a constant field strength. As

this is a vacuum state we further require its instanton number to be zero (for example, one

can choose F12 to be the only nonzero component of the field strength). For this choice,

though, we can take φi to be a constant too, Dµφi = ∂µφi = 0, such that its equation of

motion reduces to

[

[φi, φk], φ̄
i
]

=

√
2

16
|C|2εijk

(

7

3
φ̄iλ̄α̇λ̄α̇φ̄j − λ̄α̇φ̄iλ̄α̇φ̄j + φ̄jλ̄α̇φ̄iλ̄α̇

)

, (4.3)

where, in deriving the above equation we have used (4.2) and the fact that

[φ̄j , φ̄k] = 0 .

– 7 –
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Further, since only the U(1) part of the λ̄ is nonzero and φ̄i’s commute eq. (4.3) simplifies to

[

[φi, φk], φ̄
i
]

= 0 . (4.4)

For this to be consistent with the Jacobi identity, we need in addition to require that

[φi, φ̄j ] = 0 . (4.5)

One solution to (4.4) is of course [φi, φj ] = 0. However, we can also have the following

new solution:

[φi, φj ] = iα εijkφk , (4.6)

preserving the SO(3) symmetry of the action. In general, we expect that the equations of

motion fix the parameter α. However, here α remains an arbitrary constant parameter of

mass dimension one; it is a moduli parameter in the space of supersymmetric vacua.

Eq. (4.6) implies that the holomorphic coordinates φi’s satisfy an SU(2) algebra and

hence take value on a fuzzy two-sphere. To summarize, turning on a graviphton background

Cµν gives rise to a new supersymmetric vacuum state characterized as follows:

F+4
µν +

i

2
Cµν λ̄4λ̄4 = 0 ,

[φ̄i, φ̄j ] = 0 , [φi, φ̄j ] = 0 ,

[φi, φj ] = iα εijk φk , (4.7)

where the index 4 refers to the U(1) part of the gauge group. As a typical solution one

might take φ̄i to lie in the U(1) subalgebra of U(N), and the φi take value in the SU(2)

subalgebra of SU(N). An interesting aspect of the above solution is that although it

contains a constant nonvanishing field strength and noncommuting scalars it does have a

zero action. Also note that this state is supersymmetric by construction, and one might

expect that it is a direct consequence of the condition S = 0. However, notice that the

action is not hermitian and therefore supersymmetry is not necessarily followed from the

vanishing of the action. In the next subsection we will provide such an example where the

vacuum state breaks the supersymmetry.

The above configuration of φi’s is reminiscent of a BPS vacuum state in N = 1∗ model.

There the deformation is through the mass term, and one interprets the configuration as a

collection of N D3-branes sitting on a fuzzy two-sphere [45]. From the supergravity side,

the mass deformation is equivalent to turning on a 3-form flux in the bulk. The D3-branes,

on the other hand, couple magnetically to this 3-from through the Chern-Simons term,

and hence it resembles a 5-brane wrapped on a two-sphere with N units of RR flux flowing

out.

4.2 Non-supersymmetric vacuum states

There are yet more constant vacuum solutions which look like a fuzzy sphere and can be

constructed if F 4
µν is a nonvanishing constant. Although, these states have a zero action,

surprisingly they turn out to break the supersymmetry. This is mainly because of the extra

– 8 –
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C-dependent terms in the action and the fact that the theory is defined on euclidean space

where the scalars φi and φ̄i are treated independently. To start with, consider the simple

case of constant bosonic fields with fermions set to zero. Let us first look at the φr equation

of motion, it reads

[

[φj , φr], φ̄
j
]

+ i
√

2εijrC
µνF 4

µν φ̄iφ̄j = +
|C|2
24

εimnεrkj ×

×
{

φ̄mφ̄nφ̄kφ̄j φ̄i − φ̄kφ̄j φ̄mφ̄nφ̄i+

+φ̄iφ̄kφ̄j φ̄mφ̄n − φ̄iφ̄mφ̄nφ̄kφ̄j−
−[φ̄i, φ̄j ]φ̄mφ̄nφ̄k + φ̄k[φ̄i, φ̄j ]φ̄mφ̄n+

+φ̄mφ̄n[φ̄i, φ̄j ]φ̄k − φ̄kφ̄mφ̄n[φ̄i, φ̄j ]
}

. (4.8)

Now choose the following ansatz for φ̄i and φi

[φ̄i, φ̄j ] = iα εijkφ̄k

[φi, φj ] = 0 , (4.9)

where α is a constant parameter to be fixed by the equation of motion. If we plug (4.9)

into (4.8) we obtain

α3 = −4
√

2
C · F
|C|2 , (4.10)

where Fµν is a constant U(1) field strength, and C · F ≡ CµνFµν . Notice that [C] = −1,

so that α has a mass dimension 1.

Since φ̄i’s are N × N representations of the SU(2) algebra (4.9), it follows that

∑

i

φ̄iφ̄i =
α2

4
(N2 − 1) . (4.11)

Using this we can calculate the lagrangian density for this classical configuration, where

only φ̄i and the U(1) connection are nonzero,

L = −1

4
tr FµνFµν +

1

6
N(N2 − 1)

(C · F )2

|C|2 . (4.12)

We now show that there are U(1) connections for which this lagrangian density vanishes

and thus the configuration represents a vacuum state. Setting (4.12) to zero, we get

(C · F )2

|F |2|C|2 =
3

2(N2 − 1)
, (4.13)

which has always a solution for N ≥ 2. Of course, for a vacuum state we must further

require Fµν to have a zero instanton number. For example, let F12 and F13 be the only

nonvanishing components of Fµν . For Cµν , take the nonzero components to be C12 = C34,

therefore the lagrangian (4.12) becomes

L = −N

2
(F 2

12 + F 2
13) +

1

6
N(N2 − 1)F 2

12 . (4.14)
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which vanishes for

F13 = k F12 , (4.15)

with

k = ±
√

N2 − 4

3
. (4.16)

In contrast to the ordinary N = 4 SYM theory in which we must restrict to zero gauge

field strength to discuss the vacua, here we can have vacuum configurations of constant

Fµν and φ̄. The C-dependent terms allow a cancellation between the contributions of these

two fields so that we get a zero action. As φ̄i’s are not commuting, this vacuum is not

supersymmetric, though.

5. Conclusions

In this work we studied a deformation of N = 4 SYM theory induced by nonanticommu-

tative star product. We worked out the C-dependent terms and showed that the bosonic

linear terms in C can be identified with the Myers terms of a stack of D3-branes in a five-

form RR flux. This provided a further support that a graviphoton background induces a

nonanticommutativity on the worldvolume of the brane. So the dynamics can be described

either directly by taking into account the Myers terms, or the background effects on the dy-

namics can be captured through the nonanticommutative star product. We also discussed

classical vacuum states of the theory. In addition to the ordinary vacua of N = 4 theory,

the theory admits vacua where (anti)holomorphic scalars do not commute. This happened

mainly because the φ and φ̄ in euclidean space are treated as independent fields, and the

fact that we were interested in preserving only the Q supersymmetry. Furthermore, as the

action is not hermitian, we can also have vacua which break supersymmetry.
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